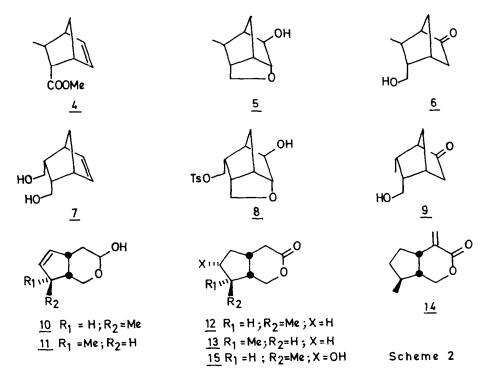

Tetrahedron Letters, Vol.24, No.51, pp 5797-5800, 1983 0040-4039/83 \$3.00 + .00 Printed in Great Britain ©1983 Pergamon Press Ltd.

IRIDOIDS : STEREOSPECIFIC SYNTHESIS OF FUNCTIONALIZED CYCLOPENTANOID INTERMEDIATES VIA BICYCLO|2.2.1|HEPTANONES P. Callant<sup>1</sup>, P. Storme, E. Van der Eycken<sup>2</sup> and M. Vandewalle<sup>\*</sup> State University of Ghent, Department of Organic Chemistry Laboratory for Organic Synthesis Krijgslaan, 281 (S.4), B-9000 GENT (Belgium)

## ABSTRACT


An efficient synthesis of functionalized trialkyl substituted cyclopentanoids is presented. Stereocontrol is secured by their formation from norbornane precursors. The strategy is illustrated by the total synthesis of  $(\pm)$ -boschnialactone  $(\underline{13})$ ,  $(\pm)$ -teucriumlactone C  $(\underline{14})$  and  $(\pm)$ -loganin  $(\underline{2})$ .

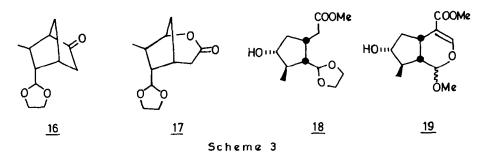
The iridoids<sup>3</sup>, with ca 300 known naturally occurring compounds, represent a class of highly oxygenated monoterpenoids, characterized by a functionalized (F) cyclopentane ring cis-fused to a dihydropyran (e.g. <u>1</u>, <u>2</u> and <u>3</u>),  $\delta$ -lactone (e.g. <u>13</u> and <u>14</u>) or  $\delta$ -lactol ring. Next to the normal monoterpenes (10 carbon atoms), a number of iridoids are found having a 9-carbon skeleton which lack C-ll as in aucubin (<u>3</u>) or exceptionally C-l0. The configuration at C-8 (when not sp<sup>2</sup> hybridized) can be  $\alpha$  as in nycthantoside (1) or  $\beta$  as in loganin (2).



The lo-position is frequently oxygenated (e.g.  $\underline{1}$  and  $\underline{3}$ ). Established strategies for iridoid synthesis involve oxidative cleavage of cis-bicyclo|3.3.0|octenenes<sup>4</sup> or annulation of the heterocyclic ring using Büchi's variant<sup>5</sup> of the de Mayo reaction<sup>6</sup>. These approaches are mainly directed towards a subgroup or a single representative. High stereocontrol is observed because of the roof-top shape of the bicyclic intermediates.

We presently describe a novel strategy which allows for a general and efficient entry into the different subclasses via functionalized (F), trialkyl substituted five-membered rings <u>ii</u> and <u>iii</u> with differentiated oxygen-functionalities (X, Y, W in <u>i</u>, <u>ii</u> and <u>iii</u>) present in the 2C and 1C carbon units (scheme 1). As these intermediates are obtained via fragmentation (Norrish I type reaction or Baeyer-Villiger oxidation) of norbornane precursors complete stereospecificity is secured. These precursors are assembled by a Diels-Alder reaction of a suitable  $Z (+ \underline{iii})$  of  $E (+ \underline{ii})$  dienophilic olefin with cyclopentadiene followed by oxidative cyclization. Here we report the synthesis of some simple iridoids with W=H as illustrative examples of the new strategy<sup>7</sup>.




The norbornene <u>4</u> (scheme 2), starting material for the C-8,  $\beta$  series <u>ii</u> (W=H), was obtained in 84 % yield from cyclopentadiene (2.5 eq) and methyl E-crotonate with Et<sub>2</sub>AlCl (1.25 eq) as catalyst (CH<sub>2</sub>Cl<sub>2</sub>, 48 h, -78°C - 0°C). The endo-exo stereoselectivity was 15:1; after reduction with LAH, exclusively the endo-alco-

5798

hol cyclized to 5 upon treatment with mCPBA in  $CH_2Cl_2^{\ 8}$  (2.5 h, 20°C) in 83 % overall yield. Swern oxidation<sup>9</sup> (87 %) followed by reductive cleavage of the ether bond (Al-Hg, THF, EtOH, 2 h, 93 %) afforded the desired norbornanone 6. The epimer 9 was obtained from the known endo-adduct of cyclopentadiene and maleic anhydride which upon LAH reduction afforded diol  $\underline{7}^{10}$ . Treatment with mCPBA as described for the formation of 5, followed by selective tosylation gave 8 in 60 % overall yield. Reductive removal<sup>11</sup> of the tosylate (super-H, THF, 1 h reflux, 88 %) followed by Swern oxidation (80 %) and Al-Hg treatment (86 %) afforded 9. The conceptually shorter synthesis involving methyl Z-crotonate is not attractive because of its difficult accessibility<sup>12</sup> and low stability under the reaction conditions. Furthermore the present route is also suitable for C-l0 functionalized iridoids (<u>i</u> and <u>ii</u>; W = oxygen function) such as <u>1</u> and <u>3</u> and allows an entry into chiral synthesis after resolution of a suitable mono-O-substituted derivative of the symmetrical diol 7.

With both <u>6</u> and <u>9</u> in hand we could now study the projected bond cleavage. Norrish I type reaction (254 nm in  $CH_3CN$  for 17 h) of <u>9</u> afforded <u>11</u> in > 90 % yield; oxidation<sup>13</sup> (PCC,  $CH_2Cl_2$ , 4 h) of the crude lactol and double bond hydrogenation (Pd-C, EtOH) gave (±)-boschnialactone<sup>14,15</sup> (<u>13</u>) in 75 % overall yield. The configuration of the C-8 epimers is evident from the reaction sequence. Isomer <u>12</u> (from <u>6</u> as described for <u>9-13</u>) was transformed into (±)-teucriumlactone  $C^{16}$  (<u>14</u>) using Grieco's method<sup>17</sup> for the introduction of the  $\alpha$ -methylene group ((1) H<sub>2</sub>CO, LDA; (2) MsCl; (3) DBU; 47 %).

The alternative cleavage of <u>6</u> involving a Baeyer-Villiger oxidation (mCPBA,  $CH_2Cl_2$ ) and spontaneous translactonization of the initially formed lactone led to <u>15</u>, an intermediate of interest for lactonic iridoids. For the synthesis of a dihydropyran ring system as present in loganin (<u>2</u>), the C-l atom in <u>15</u> is not at the desired oxidation level. Therefore <u>6</u> was first transformed into <u>16</u> in 76 % yield by Swern oxidation and selective transacetalization with 2-methyl-2-ethyl dioxolane ((1) p.TsOH,  $CH_2Cl_2$ , 45 min, 20°C; (2) MeCOMe, p.TsOH, 4h, 20°C).



Oxidation with mCPBA gave <u>17</u> (75 %) which resisted Claisen condensation with methyl formate<sup>18</sup>. After lactone ring opening (MeOH-NaOMe 0.5 eq, 24 h, 20°C; 97 %) and protection of the hydroxyl function (MEMCl,  $CH_2Cl_2$ , i.Pr<sub>2</sub>EtN, 20°C) the formyl group could be introduced upon metallation with a 1:1 mixture of t.BuOK-LiICA at -78° in HMPA-THF. Acid work-up and treatment with p.TsOH in MeOH for 48 h at room temperature gave <u>19</u> in 48 % yield from <u>18</u>, as an epimeric mixture at C-1. As the mayor  $\beta$  isomer of <u>19</u> has been transformed by Büchi<sup>5</sup> into (±)-loganin (<u>2</u>), its formation represents a formal synthesis of <u>2</u>.

Application of this strategy for the synthesis of highly functionalized iridoids as well as other cyclopentanoid natural products is presently being investigated.

## ACKNOWLEDGMENTS

We thank the "N.F.W.O." and the "Ministerie voor Wetenschapsbeleid" for financial support to the laboratory.

## REFERENCES AND NOTES

- 1. Present address : R & D Laboratories, Agfa-Gevaert NV, Septestraat, 27, B-2510 Mortsel.
- 2. Research fellow of the N.F.W.O.
- El-Naggar L.J., Beal, J.L.; J. Nat. Products, 1980, <u>43</u>, 649. Sticher, O.; New Natural Products and Plant Drugs with Pharmacological, Biological or Therapeutical Activity, 1977, 137, Ed. Wagner, H. and Wolff, P.
- 4. Whitesell, J.K., Wang, Z.K., Aguilar, D.A.; J. Org. Chem., 1983, <u>48</u>, 2511. Demuth, M., Schaffner, K.; Angew. Chem., 1982, <u>94</u>, 809. Takemoto, T., Isoe, S.; Chem. Lett., 1982, 1931. Abelman, H.M., Funk, R.C., Munger, J.D. Jr.; J. Am. Chem. Soc., 1982, <u>104</u>, 4030. Callant, P., Ongena, R., Vandewalle, M.; Tetrahedron, 1981, <u>37</u>, 2085 and ref. cited in these papers.
- 5. Büchi, G., Carlson, J.A., Powell, J.E. Jr., Tietze, L.F.; J. Am. Chem. Soc., 1970, 92, 2165.
- 6. de Mayo, P.; Accounts Chem. Res., 1971, 4, 41.
- 7. Extensive analytical data (<sup>1</sup>H NMR, MS, IR and where appropriated UV and microanalysis) have been obtained for all compounds and are in agreement with the assigned structures.
- 8. Henbest, H.B., Nicholls, B.; J. Chem. Soc., 1959, 221.
- 9. Mancuso, A.J., Swern, D.; Synthesis, 1981, 165.
- 10. Miller, H.N., Greenlee, K.W.; J. Org. Chem., 1961, 26, 3734.
- 11. Krishnamurthy, S., Brown, H.C.; J. Org. Chem., 1976, 41, 3064.
- 12. Hatch, L.F., Nesbett, S.S.; J. Am. Chem. Soc., 1950, 72, 727.
- 13. Corey, E.J., Suggs, J.W.; Tetrahedron Lett., 1975, 31, 2647.
- 14. Sakan, T., Murai, F., Hayashi, Y., Honda, Y., Shono, T., Nakajima, M., Kato, M.; Tetrahedron 1967, 23, 4635.
- 15. We thank Dr. M. Demuth for kindly sending the <sup>1</sup>H NMR spectrum of (±)-boschnialactone.
- 16. Pagnoni, U.M., Pinetti, A., Trave, R., Garanti, L.; Aust. J. Chem., 1976, 29, 1375.
- 17. Grieco, P.A., Hiroi, K.; J. Chem. Soc. Chem. Commun., 1972, 1317.
- For an analogous observation see : Roush, W.R., D'Ambra, T.E.; J. Am. Chem. Soc., 1983, 105, 1058.

(Received in UK 10 October 1983)